¿ì»îÊÓƵ Science Research Fellowship for Faculty-Student Collaborative Research
Managed by the Undergraduate Research Committee
Funding is available from the ¿ì»îÊÓƵ Science Research Fellowship (RCSRF) to facilitate and financially support summer research by teams of ¿ì»îÊÓƵ faculty and students. The ¿ì»îÊÓƵ Science Research Fellowship was created through the generosity and thoughtfulness of Reed alumni who were elected members of the National Academy of Sciences in recognition of their distinguished and continuing achievements in original scientific research. Application is open to faculty/student research teams proposing to work on problems of substantial scientific merit. Awards are not intended for curriculum development. The Institutional Review Board must approve of any project involving the use of human subjects. An award will not be administered without this approval. If your project will require IRB approval, you MUST submit your application to the IRB before applying to this fellowship.
The RCSRF stipend for summer 2025 is $6,600. There is also up to $1,500 available for project supplies. These should be listed on a separate budget page and accompanied by a justification for all budgeted items.
Deadline
Applications are due March 5, 2025 at 12:00 p.m. noon.
Eligibility
These funds are available to students and faculty who will be returning to Reed for the academic year following the summer grant period. Student applicants must be in good academic standing.
Institutional Review Board Approval
If your research opportunity involves conducting research on a human subject, then you will need to apply for approval from Reed's Institutional Review Board (IRB) in tandem with your CCREF application. Please see the IRB website for more information.
If your opportunity does require IRB approval, it's possible that you could be awarded funding before receiving IRB approval. In that case your award would be conditional while waiting for approval.
How to Apply
The student-driven project proposal should introduce the research area in adequate detail to make the explicitly stated hypothesis unambiguous. Methodology must be outlined, but need not be minutely detailed. Of considerable importance in the evaluation process will be a discussion of the significance to the central hypothesis of alternative outcomes to the proposed experiments. Sample proposals can be found on the URC homepage.
Application: By 12:00 p.m. noon on March 5, 2025, all student applicants should upload their application online by applying in Handshake. Bundle all items (1–4) in that order into one PDF document before uploading. Applicants must address all aspects of the application.
-
A cover page with the title of the project, the name and email address of the applicant, and the name and email address of the faculty member.
- Student-driven proposal: single spaced description of the project, not to exceed 5 pages including references and includes:
- Abstract: Describe the salient features of the proposal in terms easily understood by an educated, but not scientifically trained reader. See examples at the bottom of this page.
- Background and rationale
- Specific aim and hypothesis
- Design and procedure
- Predicted outcomes and alternative outcomes
- Role of the student
- Role of the faculty member
- Benefit to the student (written by faculty member)
- Note: The URC would like to be able to use successful proposals as examples for future applicants to use. Student names will be redacted from proposals before use. If you are comfortable with this possibility, then please include this statement at the bottom of your project proposal: I give permission to have my proposal used as an example to help future fellowship applicants.
- A 1–2 page (maximum) resume describing your relevant work, volunteer, and course experience.
- The URC asks for resumes to help learn more about each applicant, and to encourage students to develop their application materials. The URC does not make evaluative decisions based on the content of the resume.
- Research Supply Budget. Budget should be on its own page.
Available Guidance
Review the best practices for applying to any URC grant. For questions about the application process, applicants are strongly encouraged to contact Meg Andrews (urc@reed.edu). Members of the Undergraduate Research Committee offer office hours to answer proposal development questions. The CLBR advising team can also help you with your application and offers drop-in advising as well as 1:1 appointments. Please see the CLBR website for drop-in hours and for how to make an appointment. We encourage you to take advantage of this.
Inclusivity
The Undergraduate Research Committee seeks to offer students opportunities to support their studies and interests in the form of grants and awards. The URC views the opportunity to apply for grants and awards as a pedagogical one in which students have the chance to learn about how the application process works. The URC grants and awards are open to all students regardless of discipline. The URC is aware of systemic bias in the application process, and seeks in particular to support students from historically underrepresented communities in academia, and we take into consideration bias, oppression, and opportunity as we evaluate applications.
Travel
¿ì»îÊÓƵ prohibits College-funded international travel to countries that are classified with a .
Abstract Examples:
Project abstract examples that were returned for revision.
Original: This research project will answer whether correlated-hopping processes in a perturbative solution to the Hubbard model stabilize a novel state of matter known as orbital antiferromag-netism.
Revised: This research project is a theoretical investigation into what physical mechanisms potentially lead to the formation of microscopic current patterns inside materials. The existence of these current patterns, called orbital antiferromagnetism, is potentially related to high-temperature superconductivity, one of the great unsolved problems in physics. Our work will build upon that of Punjari and Henley [5] and Reed physics senior Indy Liu (’16); we will apply the high-order approximation method developed by Liu to the systems studied by Punjari and Henley, which are directly relevenat to the high-temperature superconductors. This investigation will answer whether a physical process known as cor-related hopping, which involves the simultaneous rearrangement of a number of electrons, can explain the formation of these current patterns.
Original: Algebraic Geometry attempts to characterize questions about geometric objects (such as curves through space) using computationally-oriented algebraic machinery. Core to many areas of math are the concept of invariants, or properties that are preserved via some transformation. Elementary examples of invariants include the shape of a polygon under translation, or the ratio of the circumference to the diameter of any circle (which is the familiar constant π). Classification of invariants is instrumental in attempting to fully classify various kinds of mathematical objects. A module is a mathematical space that allows you to take linear combinations of elements within it. A free module in addition has a basis, i.e., it has a generating set that makes the coefficients in their linear combinations uniquely determined. A resolution is a sequence of functions between modules that fulfills certain properties. Graded modules over polynomial rings decompose as direct sums of subspaces called graded components, and the multiplication by homogeneous polynomials is compatible with the labels on the components. The gradings are used in the resolutions to keep track of the maps on the typically finite-dimensional graded components. Then many questions on resolutions can be translated into more tractable linear algebra. Within a subfield of Algebraic Geometry known as Commutative Algebra, it is desirable to classify the resolutions of free graded modules via their graded Betti numbers, which are a numerical invariant of the resolutions. In my project, I will examine the graded Betti numbers of various well-behaved graded free modules and see if they admit a classification.
Revised: Algebraic Geometry attempts to characterize geometric objects, such as curves through space, using computationally-oriented algebraic tools. One main form of characterization is known as classification, which attempts to group together objects that are have similar properties. This can be immensely useful, as it can allow one to study a single object, and from it understand how a whole class of objects behave. Curves in space have certain characteristics it can be desirable to compute. One of these is known as the minimal free resolution, which can be used to classify curves. In general, it can be extremely difficult to compute this, yet highly desirable to. While algorithms exist for this purpose, applying them to a general case is a computationally difficult prospect (it is an exponential time algorithm, which can be interpreted as “very slow”). In recent years, analytic methods have been successful in computing minimal free resolutions of certain simple curves [2] [3]. In this project, we will examine curves in four-dimensional space via their free resolutions, extending the work of Roy and Gimenez to new curves. The main goal is to classify these curves and provide their Boij-S¨oderberg decomposition, a new technique within Commutative Algebra that can give better insight on how the minimal free resolution of a curve is structured [4].